курс по data science с нуля до PRO

Data Scientist

  • Освойте одну из самых перспективных сфер в IT
  • Работайте удаленно из любой точки мира
  • Специализируйтесь в узкой нише Data Science
Изучите науку о данных c нуля
Рекомендуемый срок прохождения от Skillfactory: 24 месяца
По данным bluescreen.kz на июнь 2024
Это специалист, который обрабатывает большие объемы неструктурированной информации и превращает ее в упорядоченный набор данных.
Дата-сайентист может:

Кто такой Data Scientist

Предсказать, окупится ли новый проект
Оценить будущий спрос на товары и услуги
Улучшить системы рекомендаций в соцсетях и сервисах
Создать приборы для автоматической постановки диагноза пациенту
Усовершенствовать транспортное движение
Построить систему распознавания лиц
Дата-сайентист использует методы науки о данных (Data Science), строит и тестирует математические модели. Он находит закономерности, дает прогнозы и предлагает лучшие решения в разных сферах.

Как Data Science применяется в жизни

Специалисты подразделения Google AI, занимающегося искусственным интеллектом, создали модель глубокого обучения (Deep Learning) для распознавания кожных болезней. DL-модель может диагностировать 26 болезней кожи с точностью 97%.
Компания Frontier Development Lab вместе со студентами из разных стран и специалистами Nvidia разработала алгоритм, способный создать 3D-модель астероида за четыре дня. Этот метод используют сегодня для моделирования формы астероидов в реальном времени. А NASA применяет алгоритм визуализации данных о космическом мусоре.
Компания Google создала приложение, которое позволяет слабовидящим и слепым узнавать об объектах рядом с ними — оно в реальном времени распознает на изображении с камеры объекты и передает информацию пользователю. Еще оно умеет зачитывать текст, знаки, штрихкоды и другие визуальные объекты.

Распознавание кожных заболеваний

Алгоритм моделирования астероидов

Распознавание объектов для слабовидящих и слепых

Ритейл, киберспорт, путешествия, образование, медицина — грамотный Data Scientist нужен практически в любой индустрии, а спрос значительно превышает предложение.

Почему пора присмотреться к IT-специальностям

Старт без долгого обучения

Высокая востребованность

В сфере IT можно преуспеть без профильного высшего образования. По данным hh.kz  за 2024 год, более 60% разработчиков и программистов не имеют диплома IT-специалиста.
В Казахстане IT-специалисты нужны во многих сферах — например, в банках, крупных торговых сетях, производственных компаниях.
IT-специалист
новичок в аналитике данных

Новичок

Проходить онлайн-курс о науке данных можно с нуля. Вы начнете с SQL и Python. Получите необходимые знания по математике, статистике и теории вероятности и отработаете их на практике.

Программист

Освоите работу с моделями машинного обучения и анализ данных на Python, прокачаете аналитическое мышление.

Онлайн-курс подойдет, если вы

Аналитик

Начнете анализировать данные на продвинутом уровне, автоматизировать процесс сбора данных. Будете обучать модели делать прогнозы, а также применять это для решения бизнес-задач.
Аналитик данных

После онлайн-курсов Skillfactory специалисты в среднем зарабатывают 600 600 ₸

Развивайте навыки и растите в цене
Senior-специалист
в иностранной компании
Middle-специалист
2 500 500 ₸
Junior-специалист
Senior-специалист
600 600 ₸
Java-разработчик уровня Junior
*По данным hh.kz на январь 2025 года
300 000 ₸
1 200 000 ₸

Что вы освоите

После прохождения базовой части онлайн-курса вы сможете выбрать более узкое направление в Data Science: ML Engineer или CV Engineer.
  • Разработаете модель предсказания кредитного рейтинга
  • Решите задачу классификации спама СМС-сообщений
  • Разработаете систему рекомендаций подходящих товаров при покупке
  • Построите модель для увеличения продаж в розничном бизнесе
  • Создадите изображения по текстовому описанию с помощью нейросети DALL-E
чем занимается ML Engineer

ML Engineer — Разработчик машинного обучения

  • Сможете решать все базовые задачи в сфере Computer Vision
  • Приобретете знание реального флоу работы с моделями CV, актуальных подходов и продвинутых инструментов, необходимых для создания CV-сервисов
  • В итоговом проекте создадите виртуального коуча, способного оценивать правильность выполнения упражнений на видео

CV Engineer — специалист по компьютерному зрению

чем занимается CV Engineer

Начните путь в аналитику уже сейчас

Получите доступ к онлайн-курсу со скидкой
скидка
65%

В специальном модуле о карьере вы узнаете:

Как компании ищут соискателей.
Узнаете, каких кандидатов предпочитают и как попасть в компанию мечты.
Узнаете, как проходить интервью с IT-рекрутерами и HR-менеджерами.
Получите обратную связь и поймете, как перейти на следующий этап отбора.
Как создать резюме,
которое зацепит внимание работодателя и подсветит ваши достоинства
Как разработать карьерную стратегию.
И сформируете план, который приведет к цели.
Здесь готовятся покорять сферу IT:
9000+ пользователей Skillfactory прокачали карьеру
  • Знакомятся с трендами и перспективами рынка.
  • Узнают о карьерных мероприятиях и вакансиях.
  • Объединяются в команды для участия в хакатонах.
  • Ищут единомышленников для проектов.
  • Обмениваются опытом трудоустройства: делятся тестовыми заданиями и вопросами технических интервью.
Онлайн-курсы Skillfactory специализируются на Data Science, аналитике данных и программировании
Фокус на IT-специальностей помогает постоянно наращивать экспертизу и совершенствовать программы
9 из 10
именно так оценивают пользователи качество материалов онлайн-курсов Skillfactory*
Гибкий формат прохождения онлайн-курсов для тех, кто работает
Онлайн из любой точки мира в удобном графике
Разные онлайн-форматы для максимальной эффективности
Авторские программы от экспертов из крупных IT-компаний
Опытные менторы-практики из индустрии дают подробную обратную связь и помогают усваивать материал
*по данным внутреннего исследования пользователей Skillfactory

Эффективный формат прохождения онлайн-курса

Изучайте онлайн-курс в своем темпе
Онлайн-курс Skillfactory ориентирован на тех, кто хочет управлять своим графиком. Проходите онлайн-курс без отрыва от работы и выделяйте на прохождение столько времени, сколько можете, — 15 минут или 2 часа в день.
20% курса — интересная и важная теория
Теория разбита на короткие блоки, после которых обязательно идёт практика.

Вы смотрите короткие видео, изучаете текстовые материалы и приступаете к заданиям для закрепления.
80% курса — практика в разных форматах
Для развития навыков у нас есть 5 видов практики: тренажёры, тесты, практические задания, проекты и хакатоны.

Разнообразие форматов помогает усваивать материалы максимально эффективно.
Менторы и координаторы помогут дойти до конца
Все менторы — опытные практики из IT-индустрии. Они дают качественную обратную связь на практические задания, отвечают на вопросы и помогают достичь своих целей во время освоения материалов. Выпускники оценивают менторскую поддержку на 9,1 балла из 10.

Координаторы решат любой организационный вопрос, связанный с онлайн-курсом. Их задача — мотивировать и помочь пройти курс до конца.
Не важно, сколько вам лет и какой у вас опыт, — вы справитесь.
Просто следуйте программе онлайн-курса Skillfactory.

БАЗА

Программа онлайн-курса
по направлению Data Science

На этом этапе вы изучите основы программирования на Python, узнаете, как прерабатывать и анализировать данные, а также познакомитесь с основными задачами дата-сайентиста.

Введение

1 неделя
Вы сможете сформулировать для себя реальные цели онлайн-курса, узнаете, в чем ценность DS для бизнеса, познакомитесь с основными задачами дата-сайентиста и разберетесь, как строится разработка любого DS-проекта.
  • INTRO-1. Как проходить онлайн-курс эффективно — онбординг
  • INTRO-2. Обзор направления. Типы задач в Data Science. Этапы и подходы к разработке Data Science проекта

Проектирование разработки

5 недель
Вы изучите работу с основными типами данных с помощью языка Python и сможете применять в повседневной работе циклические конструкции, условные операторы и функции.
  • PYTHON-1. Основы Python
  • PYTHON-2. Погружение в типы данных
  • PYTHON-3. Условные операторы
  • PYTHON-4. Циклы
  • PYTHON-5. Функции и функциональное программирование
  • PYTHON-6. Практика
  • PYTHON-7. Гид по стилю в среде Python (бонусный)

Работа с данными

8 недель
На этом этапе вы овладеете базовыми навыками работы с данными: сможете подготавливать, очищать и преобразовывать данные так, чтобы они были пригодны для анализа. Кстати, об анализе: вы будете анализировать данные с помощью популярных библиотек Matplotlib, Seaborn, Plotly.
  • PYTHON-8. Инструменты Data Science
  • PYTHON-9. Библиотека NumPy
  • PYTHON-10. Введение в Pandas
  • PYTHON-11. Базовые приемы работы с данными в Pandas
  • PYTHON-12. Продвинутые приемы работы с данными в Pandas
  • PYTHON-13. Очистка данных
  • PYTHON-14. Визуализация данных
  • PYTHON-15. Принципы ООП в Python и отладка кода (дополнительный модуль)
  • Проект 1. Аналитика датасета по закрытым вопросам

Подгрузка данных

6 недель
Вы сможете выгружать данные из разных форматов и источников. А поможет вам в этом SQL — язык структурированных запросов. Вы будете использовать агрегатные функции, соединения таблиц и сложные объединения.
  • PYTHON-16. Как выгружать данные из файлов разных форматов
  • PYTHON-17. Получение данных из веб-источников и API
  • SQL-0. Привет, SQL!
  • SQL-1. Основы SQL
  • SQL-2. Агрегатные функции
  • SQL-3. Соединение таблиц
  • SQL-4. Сложные объединения
  • Проект 2. Подгрузка новых данных. Уточнение анализа

Статистический анализ данных

7 недель
Разведывательный анализ данных (EDA) — вот, что окажется в центре вашего внимания. Вы познакомитесь со всеми этапами такого анализа и будете проводить его с помощью библиотек Statsmodels, Scikit Learn, Seaborn, Matplotlib, SciPy, Pandas. Кроме того, вам удастся поработать на Kaggle, популярном сервисе по участию в соревнованиях.
  • EDA-1. Введение в разведывательный анализ данных. Алгоритмы и методы EDA
  • EDA-2. Математическая статистика в контексте EDA. Типы признаков
  • EDA-3. Проектирование признаков (Feature Engineering)
  • EDA-4. Статистический анализ данных на Питоне
  • EDA-5. Статистический анализ данных на Питоне. Часть 2
  • EDA-6. Проектирование экспериментов
  • EDA-7. Площадка Kaggle
  • Проект 2

Введение в машинное обучение

9 недель
Вы познакомитесь с ML-библиотеками для моделирования зависимостей в данных. Вы сможете обучить основные виды ML-моделей, провести валидацию, интерпретировать результаты работы и выбрать важные признаки (feature importance).
  • ML-1. Теория машинного обучения
  • ML-2. Обучение с учителем: регрессия
  • ML-3. Обучение с учителем: классификация
  • ML-4. Обучение без учителя: кластеризация и техники снижения размерности
  • ML-5. Валидация данных и оценка модели
  • ML-6. Отбор и селекция признаков
  • ML-7. Оптимизация гиперпараметров модели
  • ML-8. ML Cookbook
  • Проект 3. Задача классификации
ОСНОВНОЙ БЛОК
Линейная алгебра, математический анализ, дискретная математика — звучит страшно, но не пугайтесь: разберем все эти предметы и научим с ними работать! На втором этапе вы погрузитесь в математику и основы машинного обучения, узнаете больше о профессиях DS, а также благодаря профориентации выберете трек обучения второго года.

Математика и машинное обучение. Часть 1

6 недель
Вы сможете решать практические задачи с помощью ручного счета и Python (векторные и матричные вычисления, работа с множествами, исследование функций с помощью дифференциального анализа).
  • MATH&ML-1. Линейная алгебра в контексте Линейных методов. Часть 1
  • MATH&ML-2. Линейная алгебра в контексте Линейных методов. Часть 2
  • MATH&ML-3. Математический анализ в контексте задачи оптимизации. Часть 1
  • MATH&ML-4. Математический анализ в контексте задачи оптимизации. Часть 2
  • MATH&ML-5. Математический анализ в контексте задачи оптимизации. Часть 3
  • Проект 4. Задача регрессии

Математика и машинное обучение. Часть 2

6 недель
Вы познакомитесь с основными понятиями теории вероятности и математической статистики, алгоритмами кластеризации, а также сможете оценивать качество произведенной кластеризации и представлять результаты в графическом виде.
  • MATH&ML-6. Теория вероятностей в контексте наивного байесовского классификатора
  • MATH&ML-7. Алгоритмы на основе деревьев решений
  • MATH&ML-8. Бустинг & Стекинг
  • MATH&ML-9. Кластеризация и техники снижения размерности. Часть 1
  • MATH&ML-10. Кластеризация и техники снижения размерности. Часть 2
  • Проект 5. Ансамблевые методы

ML в бизнесе

8 недель
Вы будете использовать ML-библиотеки для решения задачи временных рядов и рекомендательных систем. Вы сможете обучить ML-модель и провести ее валидацию, а также создать работающий прототип и запустить модель в веб-интерфейсе. А еще получите навыки A/B-тестирования, чтобы можно было оценить модель.
  • MATH&ML-11. Временные ряды. Часть 1
  • MATH&ML-12. Временные ряды. Часть 2
  • MATH&ML-13. Рекомендательные системы. Часть 1
  • MATH&ML-14. Рекомендательные системы. Часть 2
  • PROD-1. Подготовка модели к Production
  • PROD-2. Прототип Streamlit+Heroku
  • PROD-3. Бизнес-понимание. Кейс
  • Проект 6. Тема на выбор: временные ряды или рекомендательные системы
УРОВЕНЬ PRO
На третьем этапе вы познакомитесь с одним из методов машинного обучения — глубоким обучением (DL). А также вас ждет полноценный блок выбранной специализации: вы можете освоить навыки машинного обучения (ML), познакомиться с рутиной CV (компьютерного зрения).
Второй год обучения — 2 направления на выбор

Выбор направления

10 недель
ML или CV: на этом этапе вам предстоит решить, по какому пути двигаться дальше. Мы расскажем о каждом направлении и предложим решить несколько практических задач, чтобы вам было проще определиться.

Трек ML-инженер

29 недель
В ML-треке вы научитесь решать углубленные задачи машинного обучения, овладеете компетенциями дата-инженера, отточите навык работы с библиотеками Python. Также вы научитесь создавать MVP (минимально жизнеспособную версию продукта), узнаете все тонкости вывода ML-модели в продакшн и узнаете, как работают ML-инженеры в реальной жизни.
  • Введение в Deep Learning
  • Основы Data Engineering
  • Дополнительные главы Python и ML
  • Экономическая оценка эффектов и разработка MVP
  • ML в Production
  • Углубленное изучение ML-разработки и выпускной проект по выбранной теме

Трек CV-инженер

29 недель
На CV-треке вы научитесь решать такие задачи компьютерного зрения, как классификация изображений, сегментация и детекция, генерация и стилизация картинок, восстановление и повышение качества фотографий. Кроме того, вы узнаете, как выкатывать нейронные сети в продакшн.
  • Введение в Deep Learning
  • Основы Data Engineering
  • Дополнительные главы Python и ML
  • Экономическая оценка эффектов и разработка MVP
  • ML в Production
  • Углубленное изучение ML-разработки и выпускной проект по выбранной теме

Deep Learning и нейронные сети

БОНУС
Где применяются нейросети? Как обучить нейронную сеть? Что такое Deep Learning? Ответы на эти вопросы вы узнаете в бонусном разделе DL.

Введение в Data Engineering

БОНУС
Вы узнаете, в чем различие ролей дата-сайентиста и дата-инженера, какими инструментами пользуется последний в своей работе, какие задачи ежедневно решает. Слова «снежинка», «звезда» и «озеро» обретут новые значения :)

После освоения материалов вы получите

Сертификат о прохождении онлайн-курса
Он позволит чувствовать себя увереннее при трудоустройстве — работодатели отметят подтверждение квалификации официальным документом
Сертификат может быть дублирован на английском языке

Спикеры и менторы онлайн-курса

Алек Леков - ведущий автор программы курса Data Science
Ведущий автор программы
Senior ML Engineer, МТС

Алек Леков

Основные компетенции: временные ряды, Deep Learning и нейронные сети.
Занимается консалтингом в сфере AI
Эмиль Магеррамов - Ведущий автор разделов ML и DS

Эмиль Магеррамов

Руководитель группы вычислительной химии в BIOCAD.
Создает сервисы и модели машинного обучения, которые помогают химикам быстрее выпускать лекарства
Ведущий автор разделов ML и DS
Маргарита Бурова - Эксперт по Data Science

Маргарита Бурова

Эксперт по Data Science
Компетенции: Python, машинное обучение, статистика, анализ данных
Ведущий автор раздела MATH&ML
Юлия Мочалова - Эксперт по Data Science

Юлия Мочалова

Эксперт по Data Science
Компетенции: DS(ML), DE, Big Data
Автор раздела курса
Спикеры и авторы
Михаил Баранов - Эксперт по Data Science
Автор раздела курса

Михаил Баранов

Эксперт по Data Science.
Компетенции: машинное обучение, большие данные, Python
Александр Рыжков - Руководитель команды LightAutoML Kaggle Grandmaster

Александр Рыжков

Руководитель команды LightAutoML
Kaggle Grandmaster.
Компетенции: ML/DS, Python, математика, статистика, Kaggle
Автор раздела про KAGGLE
Екатерина Трофимова - Исследователь лаборатории методов анализа больших данных, факультет компьютерных наук НИУ ВШЭ.

Екатерина Трофимова

Исследователь лаборатории методов анализа больших данных, факультет компьютерных наук НИУ ВШЭ.
Компетенции: Python, PyTorch, CV, GNN
Автор модулей по EDA
Антон Киселев - Head of Marketing Analytics, Playrix.

Антон Киселев

Head of Marketing Analytics, Playrix.
Эксперт по данным с опытом 15+ лет.
Компетенции: Data Science
ведущий автор раздела «Введение в DS»
Андрей Рысистов - Эксперт DS, преподаватель Skillfactory, автор курсов, автор и соавтор нескольких научных исследований и работ.

Андрей Рысистов

Эксперт DS, преподаватель Skillfactory, автор курсов, автор и соавтор нескольких научных исследований и работ.
Сфера интересов — искусственный интеллект в авиационных технических системах
Автор модулей по Python и ML
Мария Жарова - Стажер в команде ML Циан + ментор SF
Стажер в команде ML Циан + ментор SF

Мария Жарова

Владимир Горюнов - Ментор SkillFactory на курсах Data Science, Data Engineering и Fullstack-разработчик на Python

Владимир Горюнов

Ментор SkillFactory на курсах Data Science, Data Engineering и Fullstack-разработчик на Python
Елена Мартынова - Ментор SkillFactory

Елена Мартынова

Компетенции: BI, SQL, Python, аналитика
Ментор SkillFactory
Леонид Саночкин - Ментор по NLP

Леонид Саночкин

Научный сотрудник AIRI.
10+ лет занимается исследованиями в области NLP
Ментор по NLP
Менторы

Пример вашего резюме после курса

Иван Петров
Data Scientist
300 000 ₸
Использую основные алгоритмические конструкции и структуры данных Python для проектирования алгоритмов

Умею получать данные из веб-источников или по API

Умею визуализировать данные с помощью Pandas, Matplotlib

Умею создавать модели с помощью классического машинного и глубокого обучения для решения задач Data Science

Умею оценивать качество модели вне зависимости от задачи

Применяю методы математического анализа, линейной алгебры, статистики и теории вероятности для обработки данных

Строю математические и ML-модели с использованием временных рядов

Применяю алгоритмы для рекомендательных систем (от ассоциативных правил до advanced-алгоритмов)

Специализируюсь на ML/CV/NLP-инженерии (в зависимости от выбранной специализации), применяю современные продвинутые модели для решения отдельных задач

Умею конвертировать бизнес-задачи в технические и наоборот

Умею выводить и поддерживать модели в Production с учетом специфики выбранной специализации

Обладаю дополнительными компетенциями в зависимости от выбранного майнора (продвинутый SQL, продвинутый Python, Reinforcement Learning или Data Engineering)
Python
SQL
Plotly
Seaborn
NumPy
Pandas
API
Matplotlib
Github
Kaggle
Hadoop
Инструменты:
Высокоуровневый, эффективный, простой и универсальный язык программирования. У него интуитивно понятный синтаксис, поэтому подходит для изучения новичкам.
Структурированный язык запросов, созданный, чтобы получать из базы данных необходимую информацию.
Библиотека с открытым исходным кодом для Python и R, которая подходит для создания красивых и интерактивных визуализаций.
Библиотека для визуализации данных в Python, которая интегрируется со структурами данных из Pandas. Позволяет строить разные статистические графики.
Это библиотека Python, которую применяют для математических вычислений — от базовых функций до линейной алгебры.
Библиотека Python для обработки и анализа структурированных данных. Панельными данными называют информацию, полученную в результате исследований и структурированную в виде таблиц.
Способ обмена информацией между сайтами, программами и приложениями. Можно сказать, что это набор правил, по которым осуществляется такой обмен.
Библиотека на языке Python для визуализации данных. В ней можно построить двумерные и трехмерные графики.
Сервис для совместной разработки и хостинга проектов. C его помощью над кодом может работать неограниченное количество программистов из разных стран.
Сервис для специалистов по Data Science. В нем можно изучать машинное обучение, писать свои и разбирать чужие прогнозные модели, участвовать в соревнованиях и общаться с дата-сайентистами.
Это программная платформа для сбора, хранения и обработки больших объемов данных. Проще говоря, это база данных (database), предназначенная для работы с большими данными (Big Data).
7 000 +
пользователей уже прошли онлайн-курсы Skillfactory.
Присоединяйтесь!

Стоимость онлайн-курса

при рассрочке на 24 месяца без первоначального взноса и переплат
35 080 ₸/мес
100 229 ₸/мес
-65%

Получите доступ

  • Пройдете базовую часть онлайн-курса и сможете выбрать более узкое направление в Data Science: ML Engineer или CV Engineer

  • Помощь координаторов в решении организационных вопросов

  • Интерактивные вебинары

  • Доступ к материалам онлайн-курса

Часто задаваемые вопросы

С помощью обучающих алгоритмов машинного обучения можно научить программы делать что угодно:

1. Предлагать дополнительные товары, которые пользователь купит с наибольшей вероятностью, на основе его поведения на сайте и покупок. Таким образом увеличивать продажи и прибыль бизнеса. Этому вы научитесь в модулях по рекомендательным системам.

2. Предсказывать события в клиентской базе. Таким образом можно заранее предпринять меры, которые сократят расходы или увеличат прибыль. Возьмем для примера страховую компанию, которая предоставляет услуги ДМС. Если она научит программу предсказывать, кто из клиентов в ближайшее время обратится за дорогостоящей медицинской услугой, то сможет предпринять меры, чтобы сократить расходы по ДМС. Например, позвонить клиенту и предложить ему проконсультироваться с хорошим врачом, чтобы не допустить развития болезни. Прогнозирование вы изучите в блоке «Введение в машинное обучение».

3. Формировать заказы на поставку для магазинов сети с учетом динамики продаж, сезона, прогноза погоды и других параметров. Таким образом не допускать, чтобы в торговых точках было затоваривание или нехватка товара. Построению таких моделей посвящены разделы курса по анализу временных рядов.

4. Сегментировать клиентов, чтобы делать им подходящие предложения. Возьмем для примера банк, который создал новый вид кредита. С помощью машинного обучения он может выявить в базе клиентов тех, кто вероятнее всего воспользуется таким кредитом. Решать такие задачи вы научитесь в блоке «Математика и углубленное машинное обучение».

5. Области применения машинного обучения и Python практически безграничны: от контроля качества товаров до диагностики оборудования на производстве, от продаж до аналитики, от повышения персонализации до аудита. Вы сможете использовать возможности алгоритмов практически в любой сфере. Проекты нашей учебной программы не ограничены какой-то определенной индустрией — вы сможете понять весь спектр применения анализа данных.
Заполните форму,
чтобы узнать больше
Ваша персональная
WOW-скидка
Бронируйте курс
по лучшей цене
Заполните форму, чтобы узнать больше